On a class of optimal constant weight ternary codes
نویسندگان
چکیده
A weighing matrix W of order $$n=\frac{p^{m+1}-1}{p-1}$$ and weight $$p^m$$ is constructed shown that the rows $$-W$$ together form optimal constant ternary codes length n, minimum distance $$p^{m-1}(\frac{p+3}{2})$$ for each odd prime power p integer $$m\ge 1$$ thus $$\begin{aligned} A_3\left( \frac{p^{m+1}-1}{p-1},p^{m-1}\big (\frac{p+3}{2}\big ),p^{m}\right) =2\big (\frac{p^{m+1}-1}{p-1}\big ). \end{aligned}$$
منابع مشابه
Ternary Constant Weight Codes
Let A3(n, d,w) denote the maximum cardinality of a ternary code with length n, minimum distance d, and constant Hamming weight w. Methods for proving upper and lower bounds on A3(n, d,w) are presented, and a table of exact values and bounds in the range n ≤ 10 is given.
متن کاملOn diameter perfect constant-weight ternary codes
From cosets of binary Hamming codes we construct diameter perfect constantweight ternary codes with weight n − 1 (where n is the code length) and distances 3 and 5. The class of distance 5 codes has parameters unknown before.
متن کاملEnumeration of some optimal ternary constant-weight codes
We consider the problem of classification of optimal ternary constantweight codes. We use combinatorial and computer methods to find inequivalent codes for some cases for 3 ≤ d ≤ n ≤ 9.
متن کاملOn Perfect Ternary Constant Weight Codes
We consider the space of ternary words of length n and fixed weightwwith the usual Hamming distance. A sequence of perfect single error correcting codes in this space is constructed. We prove the nonexistence of such codes with other parameters than those of the sequence.
متن کاملOn a Class of Constant Weight Codes
For any odd prime power q we first construct a certain non-linear binary code C(q, 2) having (q − q)/2 codewords of length q and weight (q − 1)/2 each, for which the Hamming distance between any two distinct codewords is in the range [q/2 − 3√q/2, q/2 + 3√q/2] that is, ‘almost constant’. Moreover, we prove that C(q, 2) is distance-invariant. Several variations and improvements on this theme are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Designs, Codes and Cryptography
سال: 2022
ISSN: ['0925-1022', '1573-7586']
DOI: https://doi.org/10.1007/s10623-022-01096-2